C++isfun -Part 11

at Turbine/Warner Bros.!

Syllabus

1) First program and introduction to data types and control structures with
applications for games learning how to use the programming environment Mar 25-27
2) Objects, encapsulation, abstract data types, data protection and scope April 1-3
3) Basic data structures and how to use them, opening files and performing
operations on files — April 8-10

4) Algorithms on data structures, algorithms for specific tasks, simple AI and planning
type algorithms, game Al algorithms April 15-17

Project 1 Due — April 17

5) More Al: search, heuristics, optimization, decision trees, supervised/unsupervised
learning — April 22-24

6) Game API and/or event-oriented programming, model view controller, map reduce
filter — April 29, May 1

7) Basic threads models and some simple databases SQLite May 6-8

8) Graphics programming, shaders, textures, 3D models and rotations May 13-15
Project 2 Due May 15

9) How to download an API and learn how to use functions in that API, Windows
Foundation Classes May 20-22

10) Designing and implementing a simple game in C++ May 27-29

11) Selected topics — Gesture recognition & depth controllers like the Microsoft
Kinect, Network Programming & TCP/IP, OSC June 3-5

12) Working on student projects - June 10-12

Final project presentations Project 3/Final Project Due June 12

Projects 2 Due in Class This Wednesday

* Please prepare a ~10 minute discussion
(PowerPoint, or other) about your program, or
yvour goal with your project, challenges you
encountered along the way, how you
overcame them, how they overcame you, etc.

e Share it with the class! 8)

Two dimensional viewing-
transformation pipeline

A .

Construct *

Ty
A

Convert Map Viewing Map Normalized

World-Coordinate World- Coordinates to Viewponlt_o'_ T

MC Scene Using Coordinates Normalized Device "~
— ™ Modaling-Coordinate to Viewing Coordinatas " Coordinates -+
Transformations Viewing using Window-Viewport o

Coordinates Specifications

yvrﬂal —

YV —

XV n XV,

World Coordinates Device Coordinates

Line clipping against a rectangular clip
window

Line Clipping Algorithms

o IWesew | 0

0101 0100 ' QOVIC
Figure 6-8

Binary region codes assigned

to line endpoints according to
relative position with respect
to the clipping rectangle.

bit 1: left
bit 2: right
bit 3: below
bit 4: above

A value of 1 in any bit position indicates that the point is in that relative position;
otherwise, the bit position is set to 0. If a point is within the clipping rectangle,
the region code is 0000. A point that is below and to the left of the rectangle has a
region code of 0101.

Bit values in the region code are determined by comparing endpoint coordi-
nate values (x, y) to the clip boundaries. Bit 1 is set to 1 if x < xwg,,. The other
three bit values can be determined using similar comparisons. For languages in
which bit manipulation is possible, region-code bit values can be determined
with the following two steps: (1) Calculate differences between endpoint coordi-
nates and clipping boundaries. (2) Use the resultant sign bit of each difference
calculation to set the corresponding value in the region code. Bit 1 is the sign bit
of x — xw,;,; bit 2 is the sign bit of xw,,, — x; bit 3 is the sign bit of v — ywg,;,; and
bit 4 is the sign bit of yw,,, — v.

Once we have established region codes for all line endpoints, we can
quickly determine which lines are completely inside the clip window and which
are clearly outside. Any lines that are completely contained within the window
boundaries have a region code of 0000 for both endpoints, and we trivially accept
these lines. Any lines that have a 1 in the same bit position in the region codes for
each endpoint are completely outside the clipping rectangle, and we trivially re-
ject these lines. We would discard the line that has a region code of 1001 for one

Linked Lists

Introduction to the Linked List ADT

CONCEPT: Dynamically allocated data structures may be linked together in memory
to form a chain.

A linked list is a series of connected nodes, where each node is a data structure. A linked list
can grow or shrink in size as the program runs. This is possible because the nodes in a linked
list are dynamically allocated. If new data need to be added to a linked list, the program
simply allocates another node and inserts it into the series. If a particular piece of data needs
to be removed from the linked list, the program deletes the node containing that data.

Advantages of Linked Lists over Arrays and vectors

Although linked lists are more complex to code and manage than arrays, they have some
distinct advantages. First, a linked list can easily grow or shrink in size. In fact, the pro-
grammer doesn’t need to know how many nodes will be in the list. They are simply cre-
ated in memory as they are needed.

One might argue that linked lists are not superior to vectors (found in the Standard Template
Librarv). because vectors. too. can exvand or shrink. The advantage that linked lists have
over vectors, however, is the speed at which a node may be inserted into or deleted from
the list. To insert a value into the middle of a vector requires all the elements below the
insertion point to be moved one position toward the vector’s end, thus making room for

the new value. Likewise, removing a value from a vector requires all the elements below
the removal point to be moved one position toward the vector’s beginning. When a node

is inserted into or deleted from a linked list, none of the other nodes have to be moved.

The Composition of a Linked List

Each node in a linked list contains one or more members that represent data. (Perhaps the
nodes hold inventory records, or customer names, addresses, and telephone numbers.) In

addition to the data, each node contains a pointer, which can point to another node. The
makeup of a node is illustrated in Figure 17-1.

Figure 17-1

Data Members

Pointer

A linked list is called “linked” because each node in the series has a pointer that points to
the next node in the list. This creates a chain where the first node points to the second node,
the second node points to the third node, and so on. This is illustrated in Figure 17-2.

Figure 17-2

°* — °* —

List Head

— NULL

Declarations

So how is a linked list created in C++? First you must declare a data structure that will be
used for the nodes. For example, the following struct could be used to create a list where
each node holds a double:

struct ListNode

{

double value;
ListNode *next;

}i:

The first member of the ListNode structure is a double named value. It will be used to
hold the node’s data. The second member is a pointer named next. The pointer can hold
the address of any object that is a ListNode structure. This allows each ListNode struc-
ture to point to the next ListNode structure in the list.

Because the ListNode structure contains a pointer to an object of the same type as that
being declared, it is known as a self-referential data structure. This structure makes it pos-
sible to create nodes that point to other nodes of the same type.

The next step is to define a pointer to serve as the list head, as shown here.
ListNode *head;

Before you use the head pointer in any linked list operations, you must be sure it is initial-
ized to NULL, because that marks the end of the list. Once you have declared a node data
structure and have created a NULL head pointer, you have an empty linked list. The next
step is to implement operations with the list.

// Specification file for the NumberList class
#ifndef NUMBERLIST_H
#define NUMBERLIST_H

class NumberlList
{
private:
// Declare a structure for the list
struct ListNode
{
double value; // The value in this node
struct ListNode *next; // To point to the next node
2
ListNode *head; // List head pointer
public:
// Constructor
NumberList()
{ head = NULL; }
// Destructor
~NumberList();
// Linked list operations
void appendNode(double);
void insertNode(double);
void deleteNode(double);
void displayList() const;
I
#endif

// Implementation file for the NumberList class
#include <iostream> // For cout and NULL
#include "NumberlList.h"

using namespace std;

//**

// appendNode appends a node containing the
// value pased into num, to the end of the list. *

//**

void NumberList::appendNode(double num)

{

ListNode *newNode; // To point to a new node

ListNode *nodePtr; // To move through the list

// Allocate a new node and store num there.
newNode = new ListNode;

newNode->value = num;

newNode->next = NULL;

// If there are no nodes in the list
// make newNode the first node.
if ('head)
head = newNode;
else // Otherwise, insert newNode at end.
{
// Initialize nodePtr to head of list.
nodePtr = head;

// Find the last node in the list.
while (nodePtr->next)
nodePtr = nodePtr->next;

// Insert newNode as the last node.
nodePtr->next = newNode;
}
}

// displayList shows the value =
// stored in each node of the linked list *
// pointed to by head. *

/ 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k %k %k %k 3k 3k >k 3k 3k 3k 3k 3k 3k 3k 3% 3%k 3k 3k %k %k %k %k %k %k 3k >k >k %k %k %k %k %k %k

void NumberList::displayList() const

{
ListNode *nodePtr; // To move through the list

// Position nodePtr at the head of the list.
nodePtr = head;

// While nodePtr points to a node, traverse
// the list.
while (nodePtr)
{
// Display the value in this node.
cout << nodePtr->value << endl;

// Move to the next node.
nodePtr = nodePtr->next;

}
}

//**

// The insertNode function inserts a node with
// num copied to its value member. *

/ %k 3k 3k >k >k %k ok ok 3k %k 3k 5k %k %k 5%k %k %k %k %k %k %k %k >k >k >k 3k 3k 3k 3k 3k 5 3%k %k 5%k %k %k %k %k %k %k %k >k >k >k %k %k %k %k %k %k

void NumberList::insertNode(double num)

{
ListNode *newNode; // A new node
ListNode *nodePtr; // To traverse the list

ListNode *previousNode = NULL; // The previous node

// Allocate a new node and store num there.
newNode = new ListNode;
newNode->value = num;

//**

// The insertNode function inserts a node with

*

// num copied to its value member. *

//**

void NumberList::insertNode(double num)

{

ListNode *newNode; // A new node
ListNode *nodePtr; // To traverse the list

ListNode *previousNode = NULL; // The previous node

// Allocate a new node and store num there.
newNode = new ListNode;
newNode->value = num;

// If there are no nodes in the list

// make newNode the first node

if ('head)

{
head = newNode;
newNode->next = NULL;

}

else // Otherwise, insert newNode

{
// Position nodePtr at the head of list.

nodePtr = head;

// Initialize previousNode to NULL.
previousNode = NULL;

// Skip all nodes whose value is less than num.
while (nodePtr != NULL && nodePtr->value < num)
{

previousNode = nodePtr;

nodePtr = nodePtr->next;

}

J/ VN LT PITVIVUD 11UUC LU UIT 11vuc aiwci

// nodePtr, then delete nodePtr.
if (nodePtr)
{

previousNode->next = nodePtr->next;
delete nodePtr;

}
}
}

/ %k 3k 3k 3k >k 3k 3k 3k 3k 3k 3k 3k 3k %k %k %k %k %k %k %k %k %k >k >k >k 3k 3k 3k 3k 3k 3% 3%k %k >k %k %k %k %k %k %k %k >k >k >k %k %k %k %k %k %k

// Destructor *

// This function deletes every node in the list. *
//**

NumberList::*NumberList()

{
ListNode *nodePtr; // To traverse the list
ListNode *nextNode; // To point to the next node

// Position nodePtr at the head of the list.
nodePtr = head;

// While nodePtr is not at the end of the list...
while (nodePtr != NULL)

{

// Save a pointer to the next node.
nextNode = nodePtr->next;

// Delete the current node.
delete nodePtr;

// Position nodePtr at the next node.
nodePtr = nextNode;

Russells-MacBook-Pro-2:Chapter 17 russellS cat Pr17-1.cpp
// This program demonstrates a simple append

// operation on a linked list.
#include <iostream>
#include "NumberList.h"
using namespace std;

Class Exercise: Append nodes to

int main() LinkedList

{
// Define a NumberList object.

NumberList list;

// Append some values to the list.
list.appendNode(2.5);
list.appendNode(7.9);
list.appendNode(12.6);
list.displayList();
return O;
}
Russells-MacBook-Pro-2:Chapter 17 russellS g++ Pr17-1.cpp
NumberList.cpp
Russells-MacBook-Pro-2:Chapter 17 russellS ./a.out
2.5
7.9
12.6

w N =

[=N

// This program demonstrates a simple append
// operation on a linked list.

#include <iostream>

#include "NumberList.h"

using namespace std;

int main()

{
// Define a NumberList object.
NumberList list;

// Bppend some values to the list.
list.appendNode(2.5);
list.appendNode(7.9);
list.appendNode(12.6);

return 0;

The first call to appendNode in line 13 passes 2.5 as the argument. In the following state-
ments, a new node is allocated in memory, 2.5 is copied into its value member, and
NULL is assigned to the node’s next pointer:

newNode = new ListNode;
newNode->value = num;
newNode->next = NULL;

Figure 17-3 illustrates the state of the head pointer and the new node.

Figure 17-3

& NULL

head
2.5 | @ — NULL

newNode

The next statement to execute is the following if statement:

if (!head)
head = newNode;

Because head points to NULL, the condition ! head is true. The statement head = newNode; is
executed, making newNode the first node in the list. This is illustrated in Figure 174.

Figure 17-4

head

L, 2.5 ® — NULL

newNode

There are no more statements to execute, so control returns to function main. In the sec-
ond call to appendNode, in line 14, 7.9 is passed as the argument. Once again, the first
three statements in the function create a new node, store the argument in the node’s value
member, and assign its next pointer to NULL. Figure 17-5 illustrates the current state of
the list and the new node.

Figure 17-5

7.9 e — NULL

o newNode

head
2.5 ® — NULL

>

Because head no longer points to NULL, the else part of the if statement executes:

else // Otherwise, insert newNode at end.

{
// Initialize nodePtr to head of list.

nodePtr = head;

// Find the last node in the list.
while (nodePtr->next)
nodePtr = nodePtr->next;

// Insert newNode as the last node.
nodePtr->next = newNode;

}

The first statement in the else block assigns the value in head to nodePtr. This causes
nodePtr to point to the same node that head points to. This is illustrated in Figure 17-6.

Figure 17-6

[7.9 o]—»NULL

newNode

s 2.5 ® — NULL

head

nodePtr

Look at the next member of the node that nodePtr points to. Its value is NULL, which
means that nodePtr->next also points to NULL. nodePtr is already at the end of the list,

so the while loop immediately terminates. The last statement, nodePtr->next =
newNode; causes nodePtr->next to point to the new node. This inserts newNode at the

end of the list as shown in Figure 17-7.

Traversing a Linked List

The appendNode function demonstrated in the previous section contains a while loop
that traverses, or travels through the linked list. In this section we will demonstrate the
displayList member function that traverses the list, displaying the value member of
each node. The following pseudocode represents the algorithm.

Assign List head to node pointer.

While node pointer is not NULL
Display the value member of the node pointed to by node pointer.
Assign node pointer to its own next member.

End While.
The function is shown here:

45 wvoid NumberList::displayList() const

46 {
47 ListNode *nodePtr; // To move through the list
48

49 // Position nodePtr at the head of the list.

50 nodePtr = head;

51

52 // While nodePtr points to a node, traverse

53 // the list.

54 while (nodePtr)

55 {

56 // Display the value in this node.

57 cout << nodePtr->value << endl;

58

59 // Move to the next node.

60 nodePtr = nodePtr->next;

61 }

62)

Program 17-4

- W N -

WNHHFODWLVWOSOWD

NN NN e e e e e e
WN HOWOD-=-IO U

NN
U

WWwwNhhNNNON
N O WO aO

W WwWwwwww
(¥= Bie IEEN B« TN & 1 B~ F¥)

W
o

L S R R R
SJ OB W N -

d

// This program demonstrates the deleteNode member function.
#include <iostream>

#include "NumberList.h"

using namespace std;

int main()

{
// Define a NumberList object.
NumberList list;

// Build the list with some values.
list.appendNode(2.5);
list.appendNode(7.9);
list.appendNode(12.6);

// Display the list.

cout << "Here are the initial values:\n";
list.displayList();

cout << endl;

// Delete the middle node.
cout << "Now deleting the node in the middle.\n";
list.deleteNode(7.9);

// Display the list.

cout << "Here are the nodes left.\n";
list.displayList();

cout << endl;

// Delete the last node.
cout << "Now deleting the last node.\n";
list.deleteNode(12.6);

// Display the list.

cout << "Here are the nodes left.\n";
list.displayList();

cout << endl;

// Delete the only node left in the list.
cout << "Now deleting the only remaining node.\n";
list.deleteNode(2.5);

// Display the list.

cout << "Here are the nodes left.\n";
list.displayList();

return 0;

S ./4dout

Here are the initial values:
2.5

7.9

12.6

Now deleting the node in the middle.
Here are the nodes left.

2.5

12.6

Now deleting the last node.

Here are the nodes left.
2.5

Now deleting the only remaining node.
Here are the nodes left.

Recall, Project 2 due this Wednesday
©

Boost Libraries

Array?

Boost.Array is a wrapper for fixed-size arrays that enhances built-in arrays by supporting
most of the STL container interface described in Section 22.1. Class array allows you to
use fixed-size arrays in STL applications rather than vectors (dynamically sized arrays),
which are not as efficient when there is no need for dynamic resizing. To use class array
with compilers that support this C++0x feature, include the <array> header.

Bind?

Boost.Bind extends the functionality of the standard functions std::bindlst and
std: :bind2nd. The bindlst and bind2nd functions are used to adapt binary functions (i.e.,
functions that take two arguments) to be used with the standard algorithms which take unary
functions (i.e., functions that take one argument). Class bind enhances that functionality by
allowing you to adapt functions that take up to nine arguments. Class bind also makes it easy
to reorder the arguments passed to the function using placeholders. To use class bind with
compilers that support this C++0x feature, include the <functional> header.

Function 4

Boost.Function allows you to store function pointers, member-function pointers and func-
tion objects in a function wrapper. A function can hold any function whose arguments and
return type can be converted to match the signature of the function wrapper. For example,
if the function wrapper was created to hold a function that takes a string and returns a
string, it can also hold a function that takes a char* and returns a char*, because a char*
can be converted to a string, using a conversion constructor. To use class function with
compilers that support this C++0x feature, include the <functional> header.

Random >

Boost .Random allows you to create various random number generators and random number
distributions. The std: : rand and std: :srand functions in the C++ Standard Library gen-
erate pseudo-random numbers. A pseudo-random number generator uses an initial state to
produce seemingly random numbers—using the same initial state produces the same se-
quence of numbers. The rand function always uses the same initial state, therefore it produc-
es the same sequence of numbers every time. The function srand allows you to set the initial
state to vary the sequence. Pseudo-random numbers are often used in testing—the predict-
ability enables you to confirm the results. Boost.Random provides pseudo-random number
generators as well as generators that can produce nondeterministic random numbers—a set
of random numbers that can’t be predicted. Such random number generators are used in
simulations and security scenarios where predictability is undesirable.

Boost.Random also allows you to specify the distribution of the numbers generated. A
common distribution is the uniform distribution, which assigns the same probability to
each number within a given range. This is similar to rolling a die or flipping a coin—each
possible outcome is equally as likely. You can set this range at compile time. Boost.Random

Documentation for Boost.Array: www.boost.org/doc/1ibs/1_45_0/doc/html/array.html.
Documentation for Boost.Bind: www.boost.org/doc/1ibs/1_45_0/1ibs/bind/bind.html.
Documentation for Boost.Function: www.boost.org/doc/1ibs/1_45_0/doc/html/function.html.
Jens Maurer, “A Proposal to Add an Extensible Random Number Facility to the Standard Library,”
Document Number N1452, April 10, 2003, www.open-std.org/jtcl/sc22/wg21/docs/papers/
2003/n1452.html.

DA I

Regex ©

Boost.Regex provides support for processing regular expressions in C++. Regular expres-
sions are used to match specific character patterns in text. Many modern programming
languages have built-in support for regular expressions, but C++ does not. With
Boost.Regex, you can search for a particular expression in a string, replace parts of a
string that match a regular expression, and split a string into tokens using regular ex-
pressions to define the delimiters. These techniques are commonly used for text process-
ing, parsing and input validation. To use regular expressions with compilers that support
this C++0x feature, include the <regex> header. We discuss some regular expression capa-
bilities in more detail in Section 23.5.

Smart_ptr”

Boost.Smart_ptr defines smart pointers that help you manage dynamically allocated re-
sources (e.g., memory, files and database connections). Programmers often get confused
about when to deallocate memory or simply forget to do it, especially when the memory
is referenced by more than one pointer. Smart pointers take care of these tasks automati-
cally. TR1 includes several smart pointers from the Boost.Smart_ptr library. We dis-
cussed the unique_ptr class in Chapter 16. shared_ptrs handle lifetime management of
dynamically allocated objects. The memory is released when there are no shared_ptrs ref-
erencing it. weak_ptrs allow you to observe the value held by a shared_ptr without as-
suming any management responsibilities. We discuss the shared_ptr and weak_ptr in
more detail in Section 23.6. To use the smart pointer classes with compilers that support
these C++0x features, thisinclude the <regex> header.

Tuple 8

A tuple is a set of objects. Boost. TupTe allows you to create sets of objects in a generic way
and allows generic functions to act on those sets. The library allows you to create tuples of
up to 10 objects; that limit can be extended. Class tuple is basically an extension to the
STL’s std: :pair class template. Tuples are often used to return multiple values from a
function. They can also be used to store sets of elements in an STL container where each
set of elements is an element of the container. Another useful feature is the ability to set
the values of variables using the elements of a tuple. To use class tupTe with compilers that
support this C++0x feature, include the <tuple> header.

Type_traits 2

The Boost.Type_traits library helps abstract the differences between types to allow ge-
neric programming implementations to be optimized. The type_traits classes allow you

Boost Libraries

Character
Character class Matches class
\d any decimal digit \D any non-digit
\w any word character \W any non-word character
\s any whitespace charac- \S any non-whitespace charac-
ter ter

Installing the Boost Libraries

The Boost libraries can be used with minimal setup on many platforms and compilers.
BoostPro Computing offers a free installer for using Boost with Visual Studio at
www . boostpro. com/downTload. Most Linux distributions offer packages for Boost, though
it is sometimes split up into separate packages for the headers and libraries. An installation
guide available at ww.boost.org/more/getting_started/index.htm1 provides setup in-
structions for many compilers and platforms.

23.5 Regular Expressions with the regex Library

[Note: The C++0x library features used in this section’s examples were not fully imple-
mented in GNU C++ at the time of this writing. For now, if you wish to use these features
in GNU C++, you can install the Boost version of the regular expressions library as dis-
cussed in Section 23.3]

Regular expressions are specially formatted strings that are used to find patterns in text.
They can be used to validate data to ensure that it is in a particular format. For example, a
zip code must consist of five digits, and a last name must start with a capital letter.

The std::trl::regex library (from header <regex>) provides several classes and
algorithms (in namespce std: : tri) for recognizing and manipulating regular expressions.
Class template basic_regex represents a regular expression. The algorithm regex_match
returns true if a string matches the regular expression. With regex_match, the entire
string must match the regular expression. The regex library also provides the algorithm
regex_search, which returns true if any part of an arbitrary string matches the regular

expression.

S g++ fig23_02.cpp

fig23 02.cpp:5:17: error: regex: No such file or directory
fig23_02.cpp: In function ‘int main()’:

fig23 02.cpp:11: error: ‘regex’ was not declared in this scope
fig23 02.cpp:11: error: expected ;' before ‘expression’
fig23_02.cpp:20: error: ‘smatch’ was not declared in this scope
fig23 02.cpp:20: error: expected ;' before ‘match’
fig23_02.cpp:23: error: ‘match’ was not declared in this scope
fig23 02.cpp:23: error: ‘expression’ was not declared in this scope
fig23 02.cpp:24: error: ‘regex_constants’ has not been declared
fig23 02.cpp:24: error: ‘regex_search’ was not declared in this scope

// Demonstrating regular expressions.
#include <iostream>
#include <string>
#include <regex>
using namespace std; // allows use of features in both std and std::trl
int main()
{
// create a regular expression
regex expression("J.*\\d[0-35-9]-\\d\\d-\\d\\d");
// create a string to be tested
string stringl = "Jane's Birthday is 05-12-75\n"
"Dave's Birthday is 11-04-68\n"
"John's Birthday is 04-28-73\n"
"Joe's Birthday is 12-17-77";
// create a std::trl::smatch object to hold the search results
smatch match;

// match regular expression to string and print out all matches
while (regex_search(stringl, match, expression,
regex_constants::match_not_eol))

{

cout << match.str() << endl; // print the matching string

// remove the matched substring from the string
stringl = match.suffix();
}// end while

}// end of function main

ffinclude <boost/regex.hpp>
#finclude <iostream>
ftinclude <string>

int main()
{
std::string text(" 192.168.0.1 abc 10.0.0.255 10.5.1 1.2.3.4a 5.4.3.2 ");
const char* pattern =
"\\b(25[@-5]|2[0-4][0-9]|[01]?[0-9][0-9]2)"
"\\.(25[@-5]|2[@-4][0-9]|[0@1]?[0-9][0@-9]?)"
"\\.(25[@-5]|2[0-4][0-9]|[0@1]?[0©-9][0-9]2)"
"\\.(25[@-5]|2[0-4][@-9]|[e1]?[@-9][0-9]?)\\b";
boost::regex ip_regex(pattern);

boost: :sregex_iterator it(text.begin(), text.end(), ip_regex);
boost::sregex_iterator end;
for (; it != end; ++it) {

std::cout << it->str() << "\n";

// v.push_back(it->str()); or something similar

}

Output:

192.168.0.1
10.0.0.255
SN Y

The following example takes a C++ source file and builds up an index of class names, and the location of that class in the file.

#include <string->

#include <map-~

#include <fstream-~
#include <iostream~
#include <boost/regex.hpp-~

using namespace std;

// purpose:

// takes the contents of a file in the form of a string

// and searches for all the C++ class definitions, storing
// their locations in a map of strings/int's

typedef std::map<std::string, std::string::difference_type, std::less<std::string> > map_type;

const char* re =

// possibly leading whitespace:
""[[:space:]]*"
// possible template declaration:
"(template[[:space:]]*<[" ;:{]*+>[[:space:]]*)?"
// class or struct:
"(class|struct)[[:space:]]*"
// leading declspec macros etc:
"

"NV WA\

"

"[l:blank: 1 1*\\([")1*\\)"

"y"

"[[:space:]]*"
"y
// the class name
"(N\=\N\w*\\>)[[:space:]]*"
// template specialisation parameters
"(<[7i:{1*+>)?[[:space:]]*"
// terminate in { or :
TOWNL 2 ETNO IO

boost: :regex expression(re);
map_type class_index;

bool regex_callback(const boost::match_results<std::string::const_iterator-& what)

{

// what[0] contains the whole string

// what[5] contains the class name.

// what[6] contains the template specialisation if any.

// add class name and position to map:
class_index|[what[5].str() + what[6].str()] = what.position(5);
return true;

}

void load_file(std::string& s, std::istreams& is)

{

s.erase();
s.reserve(is.rdbuf()->in_avail());
char c;

while(is.get(c))

{

}

if(s.capacity() == s.size())
s.reserve(s.capacity() * 3);
s.append(l, c);

int main(int argc, const char** arqgv)

{

std::string text;
for(int i = 1; i < argc; ++i)

{

}

cout << "Processing file " << argv[i] << endl;
std::ifstream fs(argvii]);

load file(text, fs);

// construct our iterators:

boost::sregex_iterator ml(text.begin(), text.end(), expression);

boost::sregex_iterator mz2;

std::for_each(ml, m2, ®ex_callback);

// copy results:

cout << class_index.size() << " matches found" << endl;

map_type::iterator c, d;

c = class_index.begin();

d = class_index.end();

while(c != d)

{
cout << "class \"" << (*c¢).first << "\" found at index:
++C;

}

class_index.erase(class_index.begin(), class_index.end());

return 0;

' << (*c).second

<< endl;

Validating User Input with Regex & Boost

user input with regular expressions.

o
,_.
Q
w

-+
-
Q

bool validate(const string&, const string&); // validate prototyp
string inputData(const string&, const string&); // inputData prototype

int main()
{
enter the last name

I_iv“_r‘_(' Q = inputData(’);

enter the first name
string = inputDatal])3

enter the city
string =

inputDatal ,);

ter the state

.

en

string = inputDatal ,

enter the zip code
string = inputDatal ,);

// enter the phone number
string = inputData(.

display the validated data
cout <<

<< << lastName << endl

<< << firstName << endl

<< << address << endl

<< << city << endl

<< << state << endl

<< << zipCode << endl

<< << phoneNumber << endl;
} // end of function main

// validate the data format using a regular expression
bool validate(const string &data, const string &expression)
{
// create a regex to validate the data
regex validationExpression = regex(expression);
return regex_match(data, validationExpression);
} // end of function validate

// collect input from the user
string inputData(const string &fieldName, const string &expression)
{

string data; // store the data collected

// request the data from the user
cout << "Enter " << fieldName << ": ";
getline(cin, data);

// validate the data
while (!'(validate(data, expression)))

{

-
« AN,

cout << "Invalic V" << fieldName << :

cout << "Enter Y << fieldName << "': ;
getline(cin, data);
} // end while

return data;
} // end of function inputData

23.6 Smart Pointers

[Note: The C++0x library features used in this section’s examples work in both Microsoft
Visual C++ 2010 Express and GNU C++ 4.5. GNU C++ considers these features experi-
mental and requires you to use the command line option -std: c++0x to compile the ex-
amples correctly.]

Many common bugs in C and C++ code are related to pointers. Smart pointers help you
avoid errors by providing additional functionality to standard pointers. This functionality
typically strengthens the process of memory allocation and deallocation. Smart pointers
also help you write exception safe code. If a program throws an exception before delete
has been called on a pointer, it creates a memory leak. After an exception is thrown, a smart
pointer’s destructor will still be called, which calls deTete on the pointer for you.

Section 16.11 showed one of the smart pointer classes—unique_ptr—which is
responsible for managing dynamically allocated memory. A unique_ptr automatically
calls deTete to free its associated dynamic memory when the unique_ptr is destroyed or
goes out of scope. A unique_ptr is a basic smart pointer. C++0x provides other smart
pointer options with additional functionality.

23.6.1 Reference Counted shared_ptr

shared_ptrs (from header <memory> hold an internal pointer to a resource (e.g., a dynam-
ically allocated object) that may be shared with other objects in the program. You can have
any number of shared_ptrs to the same resource. shared_ptrs really do share the re-
source—if you change the resource with one shared_ptr, the changes also will be “seen”
by the other shared_ptrs. The internal pointer is deleted once the last shared_ptr to the
resource is destroyed. shared_ptrs use reference counting to determine how many
shared_ptrs point to the resource. Each time a new shared_ptr to the resource is created,
the reference count increases, and each time one is destroyed, the reference count decreas-
es. When the reference count reaches zero, the internal pointer is deleted and the memory
is released.

shared_ptrs are useful in situations where multiple pointers to the same resource are
needed, such as in STL containers. shared_ptrs can safely be copied and used in STL con-
tainers.

shared_ptrs also allow you to determine how the resource will be destroyed. For most
dynamically allocated objects, delete is used. However, some resources require more
complex cleanup. In that case, you can supply a custom deleter function, or function
object, to the shared_ptr constructor. The deleter determines how to destroy the
resource. When the reference count reaches zero and the resource is ready to be destroyed,
the shared_ptr calls the custom deleter function. This functionality enables a shared_ptr
to manage almost any kind of resource.

C++0x/C++11 Support in GCC

C++0x was the working name of the ISO C++ 2011 standard, which introduced a host of new features into the standard C++ language and library.
This project sought to implement new C++11 features in GCC, and made it the first compiler to bring feature-complete C++11 to C++ programmers.

C++11 features are available as part of the "mainline” GCC compiler in the trunk of GCC's Subversion repository and in GCC 4.3 and later. To
enable C++0x support, add the command-line parameter -std=c++0x to your g++ command line. Or, to enable GNU extensions in addition to
C++0x extensions, add -std=gnu++0x to your g++ command line. GCC 4.7 and later support -std=c++11 and -std=gnu++11 as well.

Important: GCC's support for C++11 is still experimental. Some features were implemented based on early proposals, and no attempt will be
made to maintain backward compatibility when they are updated to match the final C++11 standard.

C++11 Language Features

The following table lists new language features that have been accepted into the C++11 standard. The "Proposal” column provides a link to the ISO
C++ committee proposal that describes the feature, while the "Available in GCC?" column indicates the first version of GCC that contains an
implementation of this feature (if it has been implemented).

For information about C++11 support in a specific version of GCC, please see:

GCC 4.3 C++0x Status
GCC 4.4 C++0x Status
GCC 4.5 C++0x Status
GCC 4.6 C++0x Status
GCC 4.7 C++11 Status
GCC 4.8 C++11 Status

| Language Feature |Proposal| Available in GCC? |
IRvalue references [N2118 || GCC 43 |
| Rvalue references for *this [N2439 || GCC 438.1 |
|Initialization of class objects by rvalues ||\I 1610 || Yes |

Example Using shared_ptr

Figures 23.6-23.7 define a simple class to represent a Book with a string to represent the
title of the Book. The destructor for class Book (Fig. 23.7, lines 12-15) displays a message
on the screen indicating that an instance is being destroyed. We use this class to demon-
strate the common functionality of shared_ptr.

1 // Fig. 23.6: Book.h
2 // Declaration of class Book.
3 #ifndef
4 #define
5 #include <string>
6 using namespace std;
7
8 class Book
9 {
10 public:
11 Book(const string &bookTitle); // constructor
12 ~Book(); // destructor
13 string title; // title of the Book
14 };
15 #endif // BOOK_H
Fig. 23.6 | Book header.

ooOo~NGONUNDR WN -

10
11
12
13
14
15

// Fig. 23.7: Book.cpp

// Member-function definitions for class Book.
#include <iostream>

#include <string>

#include

using namespace std;

Book: :Book(const string &bookTitle) : title(bookTitle)
{
}

Book: :~Book ()
{

cout << << title << endl;
} // end of destructor

Fig.

23.7 | Book member-function definitions.

Book.h, Book.cpp, and
SharedPtrExample.cpp are
in the Google Drive

Creating shared_ptrs

The program in Fig. 23.8 uses shared_ptrs (from the header <memory>) to manage several
instances of class Book. We also create a typedef, BookPtr, as an alias for the type
shared_ptr<Book> (line 10). Line 28 creates a shared_ptr to a Book titled "C++ How to
Program" (using the BookPtr typedef). The shared_ptr constructor takes as its argument
a pointer to an object. We pass it the pointer returned from the new operator. This creates
a shared_ptr that manages the Book object and sets the reference count to one. The con-
structor can also take another shared_ptr, in which case it shares ownership of the re-
source with the other shared_ptr and the reference count is increased by one. The first
shared_ptr to a resource should always be created using the new operator. A shared_ptr
created with a regular pointer assumes it’s the first shared_ptr assigned to that resource
and starts the reference count at one. If you make multiple shared_ptrs with the same
pointer, the shared_ptrs won’t acknowledge each other and the reference count will be
wrong. When the shared_ptrs are destroyed, they both call delete on the resource.

A smart pointer is a class that wraps a "bare" C++ pointer, to manage the lifetime of the object being
pointed to.

With "bare"” C++ pointers, the programmer has to explicitly destroy the object when it is no longer useful.

// Need to create the object to achieve some goal
MyObject* ptr = new MyObject();

ptr->DoSomething();// Use the object in some way.
delete ptr; // Destroy the object. Done with it.

// Wait, what if DoSomething() raises an exception....

A smart pointer by comparison defines a policy as to when the object is destroyed. You still have to
create the object, but you no longer have to worry about destroying it.

SomeSmartPtr<MyObject> ptr(new MyObject());
ptr->DoSomething(); // Use the object in some way.

// Destruction of the object happens, depending
// on the policy the smart pointer class uses.

// Destruction would happen even if DoSomething()
// raises an exception

Note that scoped_ptr instances cannot be copied. This prevents the pointer from being deleted multiple
times (incorrectly). You can however pass references to it around to other functions you call.

Scoped pointers are useful when you want to tie the lifetime of the object to a particular block of code, or
if you embedded it as member data inside another object, the lifetime of that other object. The object
exists until the containing block of code is exitted, or until the containing object is itself destroyed.

A more complex smart pointer policy involves reference counting the pointer. This does allow the pointer
to be copied. When the last "reference” to the object is destroyed, the object is deleted. This policy is
implemented by boost::shared_ptr and std::trl:shared_ptr.

void f()

{
typedef std::trl::shared_ptr<MyObject> MyObjectPtr; // Nice short alias.

MyObjectPtr pl; // Empty

{
MyObjectPtr p2(new MyObject());
// There is now one "reference" to the created object
pl=p2; // Copy the pointer.
// There is are now two references to the object.

} // p2 is destroyed, leaving one reference to the object.

} // pl is destroyed, leaving a reference count of zero.
// The object is deleted.

Reference counted pointers are very useful when the lifetime of your object is much more complicated,
and is not tied directly to a particular section of code or to another object.

Function objects in the STL

Many STL algorithms allow you to pass a function pointer into the algorithm to help the
algorithm perform its task. For example, the binary_search algorithm that we discussed
in Section 22.8.6 is overloaded with a version that requires as its fourth parameter a point-
er to a function that takes two arguments and returns a boo1 value. The binary_search
algorithm uses this function to compare the search key to an element in the collection. The
function returns true if the search key and element being compared are equal; otherwise,
the function returns false. This enables binary_search to search a collection of elements
for which the element type does not provide an overloaded equality == operator.

The STL’s designers made the algorithms more flexible by allowing any algorithm
that can receive a function pointer to receive an object of a class that overloads the paren-
theses operator with a function named operator(), provided that the overloaded operator
meets the requirements of the algorithm—in the case of binary_search, it must receive
two arguments and return a bool. An object of such a class is known as a function object
and can be used syntactically and semantically like a function or function pointer—the
overloaded parentheses operator is invoked by using a function object’s name followed by
parentheses containing the arguments to the function. Together, function objects and
functions are known as functors. Most algorithms can use function objects and functions
interchangeably.

Function objects provide several advantages over function pointers. Since function
objects are commonly implemented as class templates that are included into each source
code file that uses them, the compiler can inline an overloaded operator() to improve
performance. Also, since they’re objects of classes, function objects can have data members
that operator() can use to perform its task.

STL function objects

STL function objects

divides< T >
equal_to< T >
greater< T >
greater_equal< T >
less< T >
less_equal< T >
logical_and< T >

logical_not< T >

arithmetic
relational
relational
relational
relational
relational
logical

logical

Togical_or< T >
minus< T >
modulus< T >
negate< T >
not_equal_to< T >
plus< T >

multiplies< T >

logical
arithmetic
arithmetic
arithmetic
relational
arithmetic

arithmetic

VoO~NSONND WN =

// Fig. 22.42: Fig22_42.cpp

// Demonstrating function objects.

#include <iostream>

#include <vector> // vector class-template definition
#include <algorithm> // copy algorithm

#include <numeric> // accumulate algorithm

#include <functional> // binary_function definition
#include <iterator> // ostream_iterator

using namespace std;

// binary function adds square of its second argument and the
// running total in its first argument, then returns the sum
int sumSquares(int total, int value)

{

e

return total + value * value;
} // end function sumSquares

// binary function class template defines overloaded operator()
// that adds the square of its second argument and running
// total 1in its first argument, then returns sum
template< typename T >
class SumSquaresClass : public binary_function< T, T, T >
{
public:
// add square of value to total and return result
T operator()(const T &total, const T &value)
{

g

return total + value * value;
} // end function operator()
}; // end class SumSquaresClass

Ende

